Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Epilepsy is one of the most common neurological diseases globally (around 50M people globally). Fortunately, up to 70% of people with epilepsy could live seizure-free if properly diagnosed and treated, and a reliable technique to monitor the onset of seizures could improve the quality of life of patients who are constantly facing the fear of random seizure attacks. The current gold standard, video-EEG (v-EEG), involves attaching over 20 electrodes to the scalp, is costly, requires hospitalization, trained professionals, and is uncomfortable for patients. To address this gap, we developedEarSD, a lightweight and unobtrusive ear-worn system to detect seizure onsets by measuring physiological signals behind the ears. This system can be integrated into earphones, headphones, or hearing aids, providing a convenient solution for continuous monitoring.EarSDis an integrated custom-builtsensing-computing-communicationear-worn platform to capture seizure signals, remove the noises caused by motion artifacts and environmental impacts, and stream the collected data wirelessly to the computer/mobile phone nearby.EarSD’s ML algorithm, running on a server, identifies seizure-associated signatures and detects onset events. We evaluated the proposed system in both in-lab and in-hospital experiments at the University of Texas Southwestern Medical Center with epileptic seizure patients, confirming its usability and practicality.more » « lessFree, publicly-accessible full text available January 31, 2026
- 
            Traditional machine learning techniques are prone to generating inaccurate predictions when confronted with shifts in the distribution of data between the training and testing phases. This vulnerability can lead to severe consequences, especially in applications such as mobile healthcare. Uncertainty estimation has the potential to mitigate this issue by assessing the reliability of a model's output. However, existing uncertainty estimation techniques often require substantial computational resources and memory, making them impractical for implementation on microcontrollers (MCUs). This limitation hinders the feasibility of many important on-device wearable event detection (WED) applications, such as heart attack detection. In this paper, we present UR2M, a novel Uncertainty and Resource-aware event detection framework for MCUs. Specifically, we (i) develop an uncertainty-aware WED based on evidential theory for accurate event detection and reliable uncertainty estimation; (ii) introduce a cascade ML framework to achieve efficient model inference via early exits, by sharing shallower model layers among different event models; (iii) optimize the deployment of the model and MCU library for system efficiency. We conducted extensive experiments and compared UR2M to traditional uncertainty baselines using three wearable datasets. Our results demonstrate that UR2M achieves up to 864% faster inference speed, 857% energy-saving for uncertainty estimation, 55% memory saving on two popular MCUs, and a 22% improvement in uncertainty quantification performance. UR2M can be deployed on a wide range of MCUs, significantly expanding real-time and reliable WED applications.more » « less
- 
            Difficulty falling asleep is one of the typical insomnia symptoms. However, intervention therapies available nowadays, ranging from pharmaceutical to hi-tech tailored solutions, remain ineffective due to their lack of precise real-time sleep tracking, in-time feedback on the therapies, and an ability to keep people asleep during the night. This paper aims to enhance the efficacy of such an intervention by proposing a novel sleep aid system that can sense multiple physiological signals continuously and simultaneously control auditory stimulation to evoke appropriate brain responses for fast sleep promotion. The system, a lightweight, comfortable, and user-friendly headband, employs a comprehensive set of algorithms and dedicated own-designed audio stimuli. Compared to the gold-standard device in 883 sleep studies on 377 subjects, the proposed system achieves (1) a strong correlation (0.89 ± 0.03) between the physiological signals acquired by ours and those from the gold-standard PSG, (2) an 87.8% agreement on automatic sleep scoring with the consensus scored by sleep technicians, and (3) a successful non-pharmacological real-time stimulation to shorten the duration of sleep falling by 24.1 min. Conclusively, our solution exceeds existing ones in promoting fast falling asleep, tracking sleep state accurately, and achieving high social acceptance through a reliable large-scale evaluation.more » « less
- 
            Quantum annealing (QA) that encodes optimization problems into Hamiltonians remains the only near-term quantum computing paradigm that provides sufficient qubits for real-world applications. To fit larger optimization instances on existing quantum annealers, reducing Hamiltonians into smaller equivalent Hamiltonians provides a promising approach. Unfortunately, existing reduction techniques are either computationally expensive or ineffective in practice. To this end, we introduce a novel notion of non-separable group, defined as a subset of qubits in a Hamiltonian that obtains the same value in optimal solutions. We develop a non-separability theory accordingly and propose FastHare, a highly efficient reduction method. FastHare, iteratively, detects and merges non-separable groups into single qubits. It does so within a provable worst-case time complexity of only O(αn^2), for some user-defined parameter α. Our extensive benchmarks for the feasibility of the reduction are done on both synthetic Hamiltonians and 3000+ instances from the MQLIB library. The results show FastHare outperforms the roof duality, the implemented reduction in D-Wave’s library. It demonstrates a high level of effectiveness with an average of 62% qubits saving and 0.3s processing time, advocating for Hamiltonian reduction as an inexpensive necessity for QA.more » « less
- 
            While the global healthcare market of wearable devices has been growing significantly in recent years and is predicted to reach $60 billion by 2028, many important healthcare applications such as seizure monitoring, drowsiness detection, etc. have not been deployed due to the limited battery lifetime, slow response rate, and inadequate biosignal quality.This study proposes PROS, an efficient pattern-driven compressive sensing framework for low-power biopotential-based wearables. PROS eliminates the conventional trade-off between signal quality, response time, and power consumption by introducing tiny pattern recognition primitives and a pattern-driven compressive sensing technique that exploits the sparsity of biosignals. Specifically, we (i) develop tiny machine learning models to eliminate irrelevant biosignal patterns, (ii) efficiently perform compressive sampling of relevant biosignals with appropriate sparse wavelet domains, and (iii) optimize hardware and OS operations to push processing efficiency. PROS also provides an abstraction layer, so the application only needs to care about detected relevant biosignal patterns without knowing the optimizations underneath.We have implemented and evaluated PROS on two open biosignal datasets with 120 subjects and six biosignal patterns. The experimental results on unknown subjects of a practical use case such as epileptic seizure monitoring are very encouraging. PROS can reduce the streaming data rate by 24X while maintaining high fidelity signal. It boosts the power efficiency of the wearable device by more than 1200\% and enables the ability to react to critical events immediately on the device. The memory and runtime overheads of PROS are minimal, with a few KBs and 10s of milliseconds for each biosignal pattern, respectively. PROS is currently adopted in research projects in multiple universities and hospitals.more » « less
- 
            Li-Jessen, Nicole Yee-Key (Ed.)The Earable device is a behind-the-ear wearable originally developed to measure cognitive function. Since Earable measures electroencephalography (EEG), electromyography (EMG), and electrooculography (EOG), it may also have the potential to objectively quantify facial muscle and eye movement activities relevant in the assessment of neuromuscular disorders. As an initial step to developing a digital assessment in neuromuscular disorders, a pilot study was conducted to determine whether the Earable device could be utilized to objectively measure facial muscle and eye movements intended to be representative of Performance Outcome Assessments, (PerfOs) with tasks designed to model clinical PerfOs, referred to as mock-PerfO activities. The specific aims of this study were: To determine whether the Earable raw EMG, EOG, and EEG signals could be processed to extract features describing these waveforms; To determine Earable feature data quality, test re-test reliability, and statistical properties; To determine whether features derived from Earable could be used to determine the difference between various facial muscle and eye movement activities; and, To determine what features and feature types are important for mock-PerfO activity level classification. A total of N = 10 healthy volunteers participated in the study. Each study participant performed 16 mock-PerfOs activities, including talking, chewing, swallowing, eye closure, gazing in different directions, puffing cheeks, chewing an apple, and making various facial expressions. Each activity was repeated four times in the morning and four times at night. A total of 161 summary features were extracted from the EEG, EMG, and EOG bio-sensor data. Feature vectors were used as input to machine learning models to classify the mock-PerfO activities, and model performance was evaluated on a held-out test set. Additionally, a convolutional neural network (CNN) was used to classify low-level representations of the raw bio-sensor data for each task, and model performance was correspondingly evaluated and compared directly to feature classification performance. The model’s prediction accuracy on the Earable device’s classification ability was quantitatively assessed. Study results indicate that Earable can potentially quantify different aspects of facial and eye movements and may be used to differentiate mock-PerfO activities. Specially, Earable was found to differentiate talking, chewing, and swallowing tasks from other tasks with observed F1 scores >0.9. While EMG features contribute to classification accuracy for all tasks, EOG features are important for classifying gaze tasks. Finally, we found that analysis with summary features outperformed a CNN for activity classification. We believe Earable may be used to measure cranial muscle activity relevant for neuromuscular disorder assessment. Classification performance of mock-PerfO activities with summary features enables a strategy for detecting disease-specific signals relative to controls, as well as the monitoring of intra-subject treatment responses. Further testing is needed to evaluate the Earable device in clinical populations and clinical development settings.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available